3.1 Elementary Matrix Operations and Elementary Matrix

- Elementary Matrix Operations
- Solving a System by Row Eliminations: Example
- Elementary Matrix
- Multiplication by Elementary Matrices
- Properties of Elementary Operations
- Inverses of Elementary Matrices

A B b

Elementary Matrix Operations

Definition (Elementary Matrix Operations)

Elementary row/column operations on an $m \times n$ matrix A:

- (Interchange) interchanging any two rows/columns
- (Scaling) multiplying any row/column by nonzero scalar
- ③ (Replacement) adding any scalar multiple of a row/column to another row/column

Row Equivalent Matrices

Two matrices where one matrix can be transformed into the other matrix by a sequence of elementary row operations.

Fact about Row Equivalence

If the augmented matrices of two linear systems are row equivalent, then the two systems have the same solution set.

イロト 不得下 イヨト イヨト

Solving a System by Row Eliminations: Example

Example (Row Eliminations to a Triangular Form)

3.1 Elementary Matrix

Math 4377/6308, Advanced Linear Algebra

Solving a System by Row Eliminations: Example (cont.)

3.1 Elementary Matrix

Example (Row Eliminations to a Diagonal Form)					
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$				
$\begin{array}{rrrrr} x_1 & - & 2x_2 \\ & & x_2 \end{array}$	$= -3$ $= 16$ $x_3 = 3$ \Downarrow	$\left[\begin{array}{rrrrr} 1 & -2 & 0 & -3 \\ 0 & 1 & 0 & 16 \\ 0 & 0 & 1 & 3 \end{array}\right]$			
x ₁ x ₂	= 29 = 16 $x_3 = 3$	$\left[\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$			
Solution: (29, 16, 3)					

Elementary Matrix

Definition

An $n \times n$ elementary matrix is obtained by performing an elementary operation on I_n . It is of type 1, 2, or 3, depending on which elementary operation was performed.

Example

Let
$$E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
, $E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$,
 $E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix}$ and $A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$.
 E_1 , E_2 , and E_3 are elementary matrices. Why?

Multiplication by Elementary Matrices

3.1 Elementary Matrix

Observe the following products and describe how these products can be obtained by elementary row operations on *A*.

$$E_{1}A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = \begin{bmatrix} a & b & c \\ 2d & 2e & 2f \\ g & h & i \end{bmatrix}$$
$$E_{2}A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = \begin{bmatrix} a & b & c \\ g & h & i \\ d & e & f \end{bmatrix}$$
$$E_{3}A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 3a + g & 3b + h & 3c + i \end{bmatrix}$$

If an elementary row operation is performed on an $m \times n$ matrix A, the resulting matrix can be written as EA, where the $m \times m$ matrix E is created by performing the same row operations on I_m .

Properties of Elementary Operations

Theorem (3.1)

Let $A \in M_{m \times n}(F)$, and B obtained from an elementary row (or column) operation on A. Then there exists an $m \times m$ (or $n \times n$) elementary matrix E s.t. B = EA (or B = AE). This E is obtained by performing the same operation on I_m (or I_n). Conversely, for elementary E, then EA (or AE) is obtained by performing the same operation of A as that which produces E from I_m (or I_n).

3.1 Elementary Matrix Elementary Matrix Example: Row Eliminations to a Triangular Form - Step 1

Math 4377/6308, Advanced Linear Algebra

3.1 Elementary Matrix Elementary Matrix Example: Row Eliminations to a Triangular Form - Step 2

Math 4377/6308, Advanced Linear Algebra

3.1 Elementary Matrix Elementary Matrix Elementary Matrix Example: Row Eliminations to a Triangular Form - Step 3

3.1 Elementary Matrix Elementary Matrix Example: Row Eliminations to a Diagonal Form - Step 4

Math 4377/6308, Advanced Linear Algebra

3.1 Elementary Matrix Elementary Matrix Example: Row Eliminations to a Diagonal Form - Step 5

Inverses of Elementary Matrices

Theorem (3.2)

Elementary matrices are invertible, and the inverse is an elementary matrix of the same type.

Elementary matrices are *invertible* because row operations are *inversible*. To determine the inverse of an elementary matrix E, determine the elementary row operation needed to transform E back into I and apply this operation to I to find the inverse.

Example					
	<i>E</i> ₃ =	[1 0 3	0 1 0	$E_3^{-1} = $]

(人間) トイヨト イヨト

3.1 Elementary Matrix

lementary Matrix

Inverses of Elementary Matrices: Examples

Example

$$E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad E_1^{-1} = \begin{bmatrix} \\ \\ \end{bmatrix}$$

Example

$$E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \qquad E_2^{-1} = \begin{bmatrix} \\ \\ \end{bmatrix}$$

→ ∃ →

∃ →

3.2 The Rank of a Matrix and Matrix Inverses

- The Rank of a Matrix
 - Defintion
 - Properties of the Rank of a Matrix
 - Determining the Rank of a Matrix
 - Rank of Matrix Products
- The Matrix Inverses

The Rank of a Matrix

Definition (The Rank of a Matrix)

The rank of a matrix $A \in M_{m \times n}(F)$ is the rank of the linear transformation $L_A : F^n \to F^m$.

$$\operatorname{rank}(A) = \operatorname{rank}(L_A) = \dim(R(L_A))$$

An $n \times n$ matrix is invertible if and only if its rank is n.

The Rank of a Matrix

Theorem (3.3)

Let $T: V \to W$ be linear between finite-dimensional V, W with ordered bases β , γ . Then

 $\operatorname{rank}(T) = \operatorname{rank}([T]^{\gamma}_{\beta}).$

$$\operatorname{rank}(T) = \operatorname{rank}(L_A), \operatorname{nullity}(T) = \operatorname{nullity}(L_A), \quad \text{ with } A = [T]_{\beta}^{\gamma}$$

3.2 Rank & Inverses

Theorem (3.4)

Let A be $m \times n$, and P, Q invertible of sizes $m \times m$, $n \times n$. Then

(a)
$$\operatorname{rank}(AQ) = \operatorname{rank}(A)$$

- (b) $\operatorname{rank}(PA) = \operatorname{rank}(A)$
- (c) $\operatorname{rank}(PAQ) = \operatorname{rank}(A)$

(a) Note

$$R(L_{AQ}) = R(L_A L_Q) = L_A L_Q(F^n) = L_A(L_Q(F^n)) = L_A(F^n) = R(L_A).$$

Then

$$\operatorname{rank}(AQ) = \dim(R(L_{AQ})) = \dim(R(L_A)) = \operatorname{rank}(A).$$

Corollary

Elementary row/column operations are rank-preserving.

Determining the Rank of a Matrix

Theorem (3.5)

 $\operatorname{rank}(A)$ is the maximum number of linearly independent columns of A, that is, the dimension of the subspace generated by its columns.

Note

$$R(L_A) = \operatorname{span}(\{L_A(e_1), \cdots, L_A(e_n)\}) = \operatorname{span}(\{a_1, \cdots, a_n\})$$

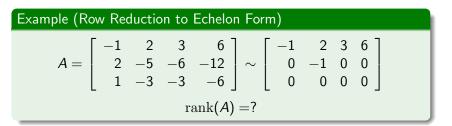
where $L_A(e_j) = Ae_j = a_j$, with a_j the *j*th column of *A*. Then

$$\operatorname{rank}(A) = \operatorname{rank}(L_A) = \dim(R(L_A)) = \dim(\operatorname{span}(\{a_1, \cdots, a_n\}))$$

nk Inverses

Determining the Rank of a Matrix

Elementary row/column operations are rank-preserving.



・ 何 ト ・ ヨ ト ・ ヨ ト

ank Inverses

Determining the Rank of a Matrix (cont.)

Theorem (3.6)

Let A be $m \times n$ with rank(A) = r. Then $r \le m$, $r \le n$, and by finite number of elementary row/column operations A can be transformed into

$$D = \begin{pmatrix} I_r & O_1 \\ O_2 & O_3 \end{pmatrix}$$

where O_1 , O_2 , O_3 are zero matrices, that is, $D_{ii} = 1$ for $i \le r$ and $D_{ij} = 0$ otherwise.

Elementary row/column operations are rank-preserving.

$$A = \begin{bmatrix} -1 & 2 & 3 & 6 \\ 2 & -5 & -6 & -12 \\ 1 & -3 & -3 & -6 \end{bmatrix} \sim \begin{bmatrix} -1 & 2 & 3 & 6 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
$$\operatorname{rank}(A) = r = 2$$

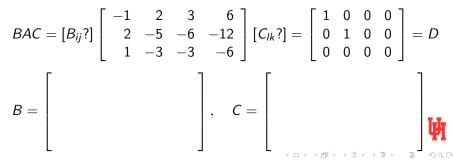
Determining the Rank of a Matrix (cont.)

3.2 Rank & Inverses

Corollary 1

Let A be $m \times n$ of rank r. Then there exists invertible B, C of sizes $m \times m$, $n \times n$ such that

$$D = BAC = \begin{pmatrix} I_r & O_1 \\ O_2 & O_3 \end{pmatrix}$$



Math 4377/6308, Advanced Linear Algebra

Determining the Rank of a Matrix (cont.)

Corollary 2

Let A be $m \times n$, then

- (a) $\operatorname{rank}(A^t) = \operatorname{rank}(A)$
- (b) rank(A) is the maximum number of linearly independent rows, that is, the dimension of the subspace generated by its rows.
- (c) The rows and columns of A generate subspaces of the same dimension, namely rank(A)

Corollary 3

Every invertible matrix is a product of elementary matrices.

3.2 Rank & Inverses

ank Inverses

Matrix Inverses as Products of Elementary Matrices

Example

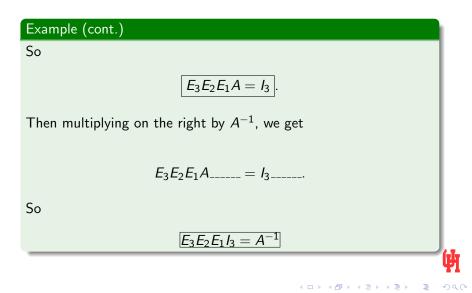
Let
$$A = \begin{bmatrix} 1 & 0 & 0 \\ -\frac{3}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \end{bmatrix}$$
. Then
 $E_1 A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -\frac{3}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -3 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$
 $E_2 (E_1 A) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -3 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix}$
 $E_3 (E_2 E_1 A) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix}$

申

3.2 Rank & Inverses

ank Inverses

Matrix Inverses as Products of Elementary Matrices (cont.)



Math 4377/6308, Advanced Linear Algebra

Rank Inverse

Rank of Matrix Products Theorem (3.7)

Let $T : V \rightarrow W$ and $U : W \rightarrow Z$ be linear on finite-dimensional V. W. Z. Let A, B be matrices such that AB is defined. Then

- (a) $\operatorname{rank}(UT) \leq \operatorname{rank}(U)$
- (b) $\operatorname{rank}(UT) \leq \operatorname{rank}(T)$
- (c) $\operatorname{rank}(AB) \leq \operatorname{rank}(A)$
- (d) $\operatorname{rank}(AB) \leq \operatorname{rank}(B)$

ank Inverse

The Inverse of a Matrix

Definition

Let A, B be $m \times n$, $m \times p$ matrices. The augmented matrix (A|B) is the $m \times (n + p)$ matrix (AB).

If A is invertible $n \times n$, then $(A|I_n)$ can be transformed into $(I_n|A^{-1})$ by finite number of elementary row operations.

If A is invertible $n \times n$ and $(A|I_n)$ is transformed into $(I_n|B)$ by finite number of elementary row operations, then $B = A^{-1}$.

If A is non-invertible $n \times n$, then any attempt to transform $(A|I_n)$ into $(I_n|B)$ produces a row whose first n entries are zero.

A (10) < A (10) </p>

The Inverses of Matrix: Example

Example

Find the inverse of
$$A = \begin{bmatrix} 2 & 0 & 0 \\ -3 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
, if it exists.

Solution:

$$\begin{bmatrix} A & I \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 & 1 & 0 & 0 \\ -3 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix} \sim \dots \sim \begin{bmatrix} 1 & 0 & 0 & \frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & \frac{3}{2} & 1 & 0 \end{bmatrix}$$

So $A^{-1} = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 1 \\ \frac{3}{2} & 1 & 0 \end{bmatrix}$

2

.∋...>

3.3 Systems of Linear Equations – Theoretical Aspects

- Systems of Linear Equations
- Solution Sets: Homogeneous System
- Solution Sets: Nonhomogeneous System
- Invertibility
- Consistency

• • = • • = •

Systems of Linear Equations

System of m linear equations in n unknowns:

3.3 Solving Linear Systems

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

or

$$Ax = b$$

with coefficient matrix A and vectors x, b:

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}, \quad x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \quad b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

Math 4377/6308, Advanced Linear Algebra

• • = • • = •

Solution Sets

• A solution to the system Ax = b:

$$s = \begin{pmatrix} s_1 \\ s_2 \\ \vdots \\ s_n \end{pmatrix} \in F^n$$
 such that $As = b$.

- The solution set of the system: The set of all solutions
- Consistent system: Nonempty solution set
- Inconsistent system: Empty solution set

→ Ξ →

Solution Sets: Homogeneous System

Definition

Ax = b is homogeneous if b = 0, otherwise nonhomogeneous.

Theorem (3.8)

Let Ax = 0 be a homogeneous system of m equations in n unknowns. The set of all solutions to Ax = 0 is $K = N(L_A)$, which is a subspace of F^n of dimension $n - \operatorname{rank}(L_A) = n - \operatorname{rank}(A)$.

Homogeneous System: Trivial Solutions

Example

Corresponding matrix equation $A\mathbf{x} = \mathbf{0}$:

$$\begin{bmatrix} 1 & 10 \\ 2 & 20 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
Trivial solution: $\mathbf{x} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ or $\mathbf{x} = \mathbf{0}$

通 と く ヨ と く ヨ と

3

tem Nonhomogeneou

Homogeneous System: Nontrivial Solutions

The homogeneous system $A\mathbf{x} = \mathbf{0}$ always has the **trivial solution**, $\mathbf{x} = \mathbf{0}$.

Nontrivial Solution

Nonzero vector solutions are called nontrivial solutions.

Example (cont.)

```
Do nontrivial solutions exist?
```

$$\begin{bmatrix} 1 & 10 & 0 \\ 2 & 20 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 10 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Consistent system with a free variable has infinitely many solutions.

A homogeneous equation $A\mathbf{x} = \mathbf{0}$ has nontrivial solutions if and only if the system of equations has

Homogeneous System: Example 1

Example (1)

Determine if the following homogeneous system has nontrivial solutions and then describe the solution set.

Solution: There is at least one free variable (why?) \implies nontrivial solutions exist

$$\sim \left[\begin{array}{rrrr} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right] \Longrightarrow \quad x_2 \quad \text{ is free}$$

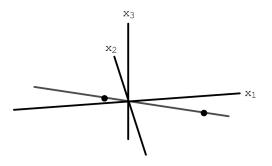
$$x_{3} =$$

 $x_1 =$

Homogeneous System: Example 1 (cont.)

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -2x_2 \\ x_2 \\ 0 \end{bmatrix} = \dots \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} = x_2 \mathbf{v}$$

Graphical representation:



solution set = span{v} = line through 0 in R^3

Math 4377/6308, Advanced Linear Algebra

tem Nonhomogeneous

Homogeneous System: Non Trivial Solutions

Corollary

If m < n, the system Ax = 0 has a nonzero solution.

Math 4377/6308, Advanced Linear Algebra

A D A D A D A

Solution Sets: Nonhomogeneous System

Theorem (3.9)

Let K be the solution set of Ax = b, and let K_H be the solution set of the corresponding homogeneous system Ax = 0. Then for any solution s to Ax = b:

$$K = \{s\} + K_H = \{s + k : k \in K_H\}.$$

• • = • •

Nonhomogeneous System: Example 2

Example (2)

Describe the solution set of

$$2x_1 + 4x_2 - 6x_3 = 0 4x_1 + 8x_2 - 10x_3 = 4 (same left side as in the previous example)$$

Solution:

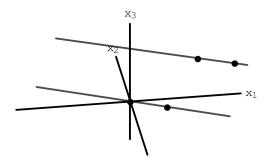
$$\begin{bmatrix} 2 & 4 & -6 & 0 \\ 4 & 8 & -10 & 4 \end{bmatrix} \text{ row reduces to } \begin{bmatrix} 1 & 2 & 0 & 6 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$
$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} =$$

過 ト イヨ ト イヨト

Nonhomogeneous System: Example 2 (cont.)

$$\mathbf{x} = \begin{bmatrix} 6\\0\\2 \end{bmatrix} + x_2 \begin{bmatrix} -2\\1\\0 \end{bmatrix} = \mathbf{p} + x_2 \mathbf{v}$$

Graphical representation:



Parallel solution sets of $A\mathbf{x} = \mathbf{0} \& A\mathbf{x} = \mathbf{b}$

Math 4377/6308, Advanced Linear Algebra

em Nonhomogeneous

Nonhomogeneous System: Recap of Previous Two Examples

Example (1. Solution of $A\mathbf{x} = \mathbf{0}$)

$$\mathbf{x} = x_2 \begin{bmatrix} -2\\1\\0 \end{bmatrix} = x_2 \mathbf{v}$$

 $\textbf{x} = x_2 \textbf{v} =$ parametric equation of line passing through 0 and v

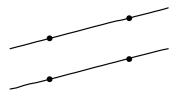
Example (2. Solution of $A\mathbf{x} = \mathbf{b}$)

$$\mathbf{x} = \begin{bmatrix} 6\\0\\2 \end{bmatrix} + x_2 \begin{bmatrix} -2\\1\\0 \end{bmatrix} = \mathbf{p} + x_2 \mathbf{v}$$

 $\mathbf{x} = \mathbf{p} + x_2 \mathbf{v} =$ parametric equation of line passing through \mathbf{p} parallel to \mathbf{v}

Math 4377/6308, Advanced Linear Algebra

Nonhomogeneous System



Parallel solution sets of $A\mathbf{x} = \mathbf{b}$ and $A\mathbf{x} = \mathbf{0}$

Suppose the equation $A\mathbf{x} = \mathbf{b}$ is consistent for some given \mathbf{b} , and let \mathbf{p} be a solution. Then the solution set of $A\mathbf{x} = \mathbf{b}$ is the set of all vectors of the form $\mathbf{w} = \mathbf{p} + \mathbf{v}_h$, where \mathbf{v}_h is any solution of the homogeneous equation $A\mathbf{x} = \mathbf{0}$.

Nonhomogeneous System: Example

Example

Describe the solution set of $2x_1 - 4x_2 - 4x_3 = 0$; compare it to the solution set $2x_1 - 4x_2 - 4x_3 = 6$.

Solution: Corresponding augmented matrix to $2x_1 - 4x_2 - 4x_3 = 0$:

$$\begin{bmatrix} 2 & -4 & -4 & 0 \end{bmatrix} \sim$$
 (fill-in)

Vector form of the solution:

$$\mathbf{v} = \begin{bmatrix} 2x_2 + 2x_3 \\ x_2 \\ x_3 \end{bmatrix} = \dots \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} + \dots \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$$

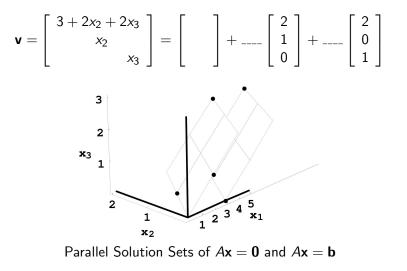
Corresponding augmented matrix to $2x_1 - 4x_2 - 4x_3 = 6$:

$$\begin{bmatrix} 2 & -4 & -4 & 6 \end{bmatrix} \sim$$
 (fill -in)

tem Nonhomogeneous

Nonhomogeneous System: Example (cont.)

Vector form of the solution:



Invertibility

Theorem (3.10)

If A is invertible then the system Ax = b has exactly one solution $x = A^{-1}b$. Conversely, if the system has exactly one solution then A is invertible.

• • = • • = •

Consistency

Theorem (3.11)

The system Ax = b is consistent if and only if

 $\mathrm{rank}(A)=\mathrm{rank}(A|b)$

過 ト イヨ ト イヨト

3.4 Systems of Linear Equations – Computational Aspects

- Equivalent Systems
- Reduced Row Echelon Form
- Gaussian Elimination
- General Solutions
- Interpretation of the Reduced Row Echelon Form

A = A = A

Equivalent Systems

Definition

Two systems of linear equations are called **equivalent** if they have the same solution set.

Theorem (3.13)

For $m \times n$ linear system Ax = b and invertible $m \times m$ matrix C, the system (CA)x = Cb is equivalent to Ax = b.

(人間) システン イラン

Equivalent Systems

Corollary

For linear system Ax = b, if (A'|b') is obtained from (A|b) by a finite number of elementary row operations, then A'x = b' is equivalent to the original system.

A D A D A D A

Reduced Row Echelon Form

Definition

A matrix is in reduced row echelon form if:

- (a) Any row containing a nonzero entry precedes any row in which all the entries are zero
- (b) The first nonzero entry in each row is the only nonzero entry in its column
- (c) The first nonzero entry in each row is 1 and it occurs in a column right of the first nonzero entry in the preceding row.

Example

$$\begin{pmatrix}
1 & 0 & x & 0 & x & 0 & x & x \\
& 1 & x & 0 & x & 0 & x & x \\
& & 1 & x & 0 & x & x \\
& & & 1 & x & 0 & x & x \\
& & & & 1 & x & x
\end{pmatrix}$$

Gaussian Elimination

Definition (Gaussian Elimination)

Reducing an augmented matrix to reduced row echelon form:

- In the forward pass, the matrix is transformed into upper triangular form where first nonzero entry of each row is 1, in a column to the right of the first nonzero entry of preceding rows.
- In the **backward pass** or **back-substitution**, the matrix is transformed into reduced row echelon form by making the first nonzero entry of each row the only nonzero entry of its column.

A D A D A D A

Important Terms

- **pivot position:** a position of a leading entry in an echelon form of the matrix.
- **pivot:** a nonzero number that either is used in a pivot position to create 0's or is changed into a leading 1, which in turn is used to create 0's.
- pivot column: a column that contains a pivot position.

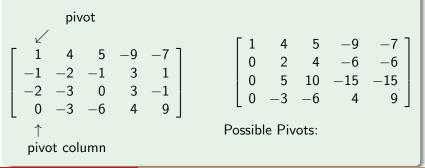
通 ト イ ヨ ト イ ヨ ト

Reduced Echelon Form: Examples

Example (Row reduce to echelon form and locate the pivots)

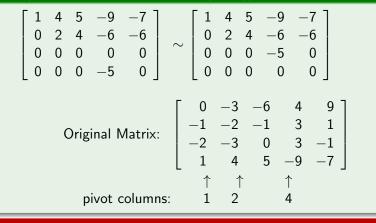
$$\begin{bmatrix} 0 & -3 & -6 & 4 & 9 \\ -1 & -2 & -1 & 3 & 1 \\ -2 & -3 & 0 & 3 & -1 \\ 1 & 4 & 5 & -9 & -7 \end{bmatrix}$$

Solution



Reduced Echelon Form: Examples (cont.)

Example (Row reduce to echelon form (cont.))



Note

There is no more than one pivot in any row. There is no more than one pivot in any column.

Math 4377/6308, Advanced Linear Algebra

Reduced Echelon Form: Examples (cont.)

Example (Row reduce to echelon form and then to REF)

Solution:

$$\begin{bmatrix} 0 & 3 & -6 & 6 & 4 & -5 \\ 3 & -7 & 8 & -5 & 8 & 9 \\ 3 & -9 & 12 & -9 & 6 & 15 \end{bmatrix} \sim \begin{bmatrix} 3 & -9 & 12 & -9 & 6 & 15 \\ 3 & -7 & 8 & -5 & 8 & 9 \\ 0 & 3 & -6 & 6 & 4 & -5 \end{bmatrix}$$
$$\sim \begin{bmatrix} 3 & -9 & 12 & -9 & 6 & 15 \\ 0 & 2 & -4 & 4 & 2 & -6 \\ 0 & 3 & -6 & 6 & 4 & -5 \end{bmatrix}$$

(人間) トイヨト イヨト

Reduced Echelon Form: Examples (cont.)

Example (Row reduce to echelon form and then to REF (cont.)) Cover the top row and look at the remaining two rows for the left-most nonzero column.

$$\begin{bmatrix} 3 & -9 & 12 & -9 & 6 & 15 \\ 0 & 2 & -4 & 4 & 2 & -6 \\ 0 & 3 & -6 & 6 & 4 & -5 \end{bmatrix} \sim \begin{bmatrix} 3 & -9 & 12 & -9 & 6 & 15 \\ 0 & 1 & -2 & 2 & 1 & -3 \\ 0 & 3 & -6 & 6 & 4 & -5 \end{bmatrix}$$
$$\sim \begin{bmatrix} 3 & -9 & 12 & -9 & 6 & 15 \\ 0 & 1 & -2 & 2 & 1 & -3 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix}$$
(echelon form)

Reduced Echelon Form: Examples (cont.)

Example (Row reduce to echelon form and then to REF (cont.))

Final step to create the reduced echelon form: Beginning with the rightmost leading entry, and working upwards to the left, create zeros above each leading entry and scale rows to transform each leading entry into 1.

$$\begin{bmatrix} 3 & -9 & 12 & -9 & 0 & -9 \\ 0 & 1 & -2 & 2 & 0 & -7 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix} \sim \begin{bmatrix} 3 & 0 & -6 & 9 & 0 & -72 \\ 0 & 1 & -2 & 2 & 0 & -7 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 0 & -2 & 3 & 0 & -24 \\ 0 & 1 & -2 & 2 & 0 & -7 \\ 0 & 0 & 0 & 1 & 4 \end{bmatrix}$$

Gaussian Elimination

Theorem (3.14)

Gaussian elimination transforms any matrix into its reduced row echelon form.

- 4 週 ト - 4 三 ト - 4 三 ト

Solutions of Linear Systems

Important Terms

- **basic variable:** any variable that corresponds to a pivot column in the augmented matrix of a system.
- free variable: all nonbasic variables.

Example (Solutions of Linear Systems)

	Γ 1	6	0	3	0	0	1
	0	0	1	3 -8 0	0	5	
	0	0	0	0	1	7	
x_1	$+6x_{2}$			$+3x_{4}$			= 0
			<i>X</i> 3	-8x	ζ4		= 5
						X5	= 7

pivot columns: basic variables: free variables:

Solutions of Linear Systems (cont.)

Final Step in Solving a Consistent Linear System

After the augmented matrix is in **reduced** echelon form and the system is written down as a set of equations, *Solve each equation* for the basic variable in terms of the free variables (if any) in the equation.

Example (General Solutions of Linear Systems)

$$\begin{array}{cccc} x_1 & +6x_2 & +3x_4 & = 0 \\ & x_3 & -8x_4 & = 5 \\ & & x_5 & = 7 \end{array} \end{array} \left\{ \begin{array}{c} x_1 = -6x_2 - 3x_4 \\ x_2 \text{ is free} \\ x_3 = 5 + 8x_4 \\ x_4 \text{ is free} \\ x_5 = 7 \end{array} \right.$$

(general solution)

Warning

Use only the reduced echelon form to solve a system.

General Solutions of Linear Systems

General Solution

The **general solution** of the system provides a parametric description of the solution set. (The free variables act as parameters.)

Example (General Solutions of Linear Systems (cont.))

$$x_1 = -6x_2 - 3x_1$$

$$x_2 \text{ is free}$$

$$x_3 = 5 + 8x_4$$

$$x_4 \text{ is free}$$

$$x_5 = 7$$

The above system has infinitely many solutions. Why?

General Solutions

Theorem (3.15)

Let Ax = b be a system of r nonzero equations in n unknowns. Suppose rank $(A) = \operatorname{rank}(A|b)$ and that (A|b) is in reduced row echelon form. Then

(a)
$$rank(A) = r$$

(b) If the general solution is of the form

$$s = s_0 + t_1 u_1 + t_2 u_2 + \cdots + t_{n-r} u_{n-r}$$

then $\{u_1, u_2, \dots, u_{n-r}\}$ is a basis for the solution set of the corresponding homogeneous system, and s_0 is a solution to the original system.

A D A D A D A

Interpretation of the Reduced Row Echelon Form

Theorem (3.16)

Let A be an $m \times n$ matrix of rank r > 0 and B the reduced row echelon form of A. Then

- (a) The number of nonzero rows in B is r.
- (b) For each $i = 1, \dots, r$, there is a column b_{j_i} of B s.t. $b_{j_i} = e_i$
- (c) The columns of A numbered j₁, ..., j_r are linearly independent
- (d) For each $k = 1, \dots, n$, if column k of B is $d_1e_1 + \dots + d_re_r$ then column k of A is $d_1a_{j_1} + \dots + d_ra_{j_r}$

- 4 同 6 4 日 6 4 日 6

Interpretation of the Reduced Row Echelon Form

Corollary

The reduced row echelon form of a matrix is unique.

Math 4377/6308, Advanced Linear Algebra

A D A D A D A